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Abstract

Generalization capacity to unseen domains is an essen-
tial issue to deploy deep learning algorithms in real-world
applications. Domain-invariant representation is a widely
used strategy that performs well on out-of-distribution.
However, recent studies point out a fundamental tradeoff
between distribution alignment and target error minimiza-
tion from an information-theoretic perspective. To solve this
problem, we introduce a mutual information maximization
module and explicitly drop superfluous information that is
not shared across multiple domains to prevent models from
relying on spurious correlations. We further boost the per-
formance by using the class prior-normalized value and
self-distillation. Our method can be viewed as an exten-
sion to contrast learning in domain generalization, which
focuses on the estimated mutual information between the
learned representations of images from the same category
among multiple domains rather than the multi-view of the
same image. We demonstrate the effectiveness of meth-
ods on two common domain generalization benchmarks and
evaluate our method thoroughly from both theoretical and
empirical perspectives.

1. Introduction

Deep learning methods have achieved remarkable suc-
cess in computer vision tasks. However, the domain shift
problem is still challenging since it violates the assump-
tion that training and testing data are independent and iden-
tically distributed (i.i.d), which leads to a non-neglectable
drop in the performance of a trained model. As the shift in
data statistics exists extensively in real-world applications,
e.g., self-driving and medical imaging, the research com-
munity has proposed a line of works to solve the problems,
including multi-domain learning [7, 36], domain adapta-
tion [38, 55, 1 1], and domain generalization [34, 16].

To deal with the distribution shift problem, domain ad-
versarial training strategy is extensively used for domain-
invariant representations [23, 33, 38, 55, 39, 20] and has
solid theoretical foundations [6, 55, 24]. Another line of

methods explicitly matches feature distributions under dif-
ferent metrics, including the mean and covariance [47],
maximum mean discrepancy [32], and Wasserstein dis-
tance [58]. However, all of these methods may induce a
nontrivial lower bound of the error in the target domain
when the marginal label distributions differ between source
and target domains [20, | 1]. Several works attempt to solve
this problem, including estimating importance weights and
aligning reweighted feature distributions [35, 3, 1 1], chang-
ing sampling strategy [28], and invariant risk minimiza-
tion [2].

In this work, we propose a new perspective to learn ro-
bust correlations among different domains to promote the
generalization ability of models. Based on contrast learn-
ing, we explicitly maximize the mutual information be-
tween the representation of images from the same category
across domains M1 (z;,zjly; = y;). In this way, we en-
force the feature extractor to preserve robust label informa-
tion across multiple domains and minimizing the superflu-
ous information related to the domain label. Compared with
mutual information maximization for unsupervised repre-
sentation learning [42, 27, 25, 9], our method does not focus
on the estimated mutual information between learned repre-
sentations of the multi-view of the same image. That step is
an important extension for contrast learning. To summarize,
the contributions of this paper are as follows:

* We propose a mutual information maximization mod-
ule to explicitly drop superfluous information related
to the domain label. This approach promotes the gen-
eralization ability of the model to out-of-distribution
and avoids the tradeoff between distribution alignment
and target error minimization from a new perspective.

* We conduct extensive experiments on domain general-
ization benchmarks. Compared with state-of-art meth-
ods, our method achieves strong performance on all
tasks.

* We thoroughly review our methods from a theoretical
and empirical perspective, clearly demonstrating the
connections and advantages with domain adversarial
training and triplet loss.
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2. Related work

In this section, we provide a literature review on do-
main generalization and mutual information estimation ap-
proaches.

2.1. Domain generalization

Most existing approaches dealing with domain general-
ization can be mainly divided into two categories: learn-
ing domain-invariant representations and using an episodic
training paradigm to simulate the unseen domain.

Domain-invariant representation methods These
methods are mainly the extension of domain adapta-
tion. In domain generalization setting, these methods
achieve domain-invariant representations within the mul-
tiple source domains [32, 33, 40], rather than between
source and target domains [37, , 38, , 39]. The
domain-invariant representations can also be achieved
by disentangling representation into the domain-specific
feature and domain-shared feature [43] and synthesizing
data from pseudo-novel domains to augment the source
domains [45, 59].

Episodic training paradigm methods Inspired by
meta-learning, these methods use episodic training to sim-
ulate domain shift. [30] adopt a similar update rule as
MAML [21]; [31] use multiple feature extractors and clas-
sifiers and train them alternatively to learn robust compo-
nents; [4] learn a meta regularizer for the classification layer
while [34] learn a meta regularizer for the feature extrac-
tor; [15] proposes global class alignment and local sample
clustering on feature space.

Recently, there are several emerging directions for do-
main generalization, including through self-supervision
and variational information bottleneck principle. Self-
supervision pretext helps the model to learn distinctive em-
beddings between every image in the dataset to avoid su-
pervision collapse, that the model only represents class in-
formation and lose the information might be useful to trans-
fer [14, 8]. The variational information bottleneck principle
can deviate to a regularization term, the Kullback-Leibler
(KL) divergence between distributions of latent encoding
of the samples from the same category in multiple source
domains [16]. Our approach falls into the domain-invariant
representation category while replacing the domain adver-
sarial training and considering the marginal label distribu-
tion.

2.2. Mutual information estimation

Recently, there have been many promising results
achieved by maximizing mutual information for unsuper-
vised representation learning [42, 25, 9]. InfoMax principle
and the properties of mutual information have been well un-
derstood for a long time. The main breakthrough of that line

of work is that they find a tractable lower bound of mutual
information and use a neural network to estimate it since
mutual information is notoriously difficult to calculate. For
example, MINE [5] uses the Donsker-Vardhan representa-
tion for KL divergence and samples for the joint distribution
and marginal distribution to unbiasedly estimate the mutual
information. InforNCE [42] is defined as the expectation
sampled from the joint distribution and used to maximize
the mutual information between the context and the predic-
tion. DeepInfoMax [27] defines a Jensen-Shannon estima-
tor to maximize the global features and local features in one
image. JS estimator is insensitive to the number of negative
samples compared with the aforementioned method.

In this paper, we maximize the estimated mutual infor-
mation in the supervised learning paradigm, between the
images of the same category from the mixture of multiple
source domains, which is different from the multi-view of
the same image used in the unsupervised paradigm and the
work for enhancing discriminability of domain-specific in-
formation [20].

3. Proposed Method

Here, we present details of our approaches. Section
3.1 illustrates the tradeoff between distribution alignment
and target error minimization from an information-theoretic
perspective. Section 3.2 demonstrates the motivation and
framework of instance-based mutual information maxi-
mization. We describe the overview of our method in Sec-
tion 3.3. Further, we demonstrate mutual information loss
in Section 3.4, and class prior-normalized value in Section
3.5. Finally, in Section 3.6, we introduce how knowledge
distillation helps domain generalization.

3.1. Preliminaries

Generalization bound for the unseen domains can be
viewed as an extension to the well-studied generalization
bound for domain adaptation. In the seminal work [6], the
H-divergence was proposed to measure the discrepancy be-
tween source and target domain. That leads to the general-
ization bound:

Let H is a hypothesis space of Vapnik—Chervonenkis
(VC) dimension d, f)s, ﬁT are samples of size m from
source and target domains. For any ¢ € (0, 1), with proba-
bility at least 1 — 6, Vh € H:

1 .
er(h) <es(h) + 5dHAH(DS,DT) + A

+4\/2d10g(2m) + log(2)

m

)

A recent work [1] extends this bound for unseen domains
under the assumption that the distributions in multiple do-
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mains are in the convex hull. They devise the domain
adversarial training to minimize pair-wise domain diver-
gences in multiple source domains. However, domain-
invariant learning suffers from a theoretical challenge when
the marginal label distributions differ between source and
target domains. [56] suggests A is not negligible. The upper
bound is also correlated with the distance between the label-
ing functions from the source and target domains. Besides,
the lower bound was firstly proposed in [56], and further
extend to k-class classification and conditional adversarial
training by [ 1]. The low bound is as follow:

Let D jg denote the Jensen-Shannon divergence between

two distributions. Suppose Markov chain: X S znMhy
holds and D j5(DY || DY) > Djs(DE || DZ), then:

ex(h) +es(h) > 3 (\/Dys(DY | DY)

—\/Dus(DF || DF))*.

The insight from the lower bound demonstrates when the
marginal label distributions differ between source and target
domains, achieving domain-invariant representations, and
minimizing the empirical risk can hinder the algorithm from
successfully transfer across domains. Rather than explicitly
align the distribution among different domains, We aim to
learn the robust correlations among multi-domains by ex-
plicitly dropping superfluous information that is related to
the domain label.

2

3.2. Mutual information maximization for dropping
superfluous information

Assume I;; and Iz to be two images from the same
category among different domains, we aim to force the fea-
ture extractor to encode images I and I, to feature Zg;
and Z4o containing robust and necessary label information
while dropping all the superfluous information of the do-
main label. We can formulate the objective as:

MI(Ig, Zagi1a2) = 0= MI(Igp1, Zg1) = MI(Ig2, Zg1).
©)

To better understand the objective, We can use the chain
rules of mutual information to subdivide M I (141, Z41) into
two components:

MI(Ig1,Zqg1) = MI(Ig1, Za1|1a2)
—_————

super fluousin formation

“)

141 contains more information related to domain d1 than I 4o
and vice versa. The optimal feature extractor aims to mini-
mize that information related to domain label and maximize
the mutual information between I;o and Z4 to capture

+ MI(1g,Za)
——_— ———

predictivein formation

the robust correlations related to the label. [18] proposed
M1I(I42, Zg41) is the upper bound of MI(z41, Z42). So our
final objective to maximize the mutual information between
the learned representations of images from the same cate-
gory among multiple domains.

3.3. Method overview

We introduce the proposed method under the scenario
that domain generalization using a mixture of £ source do-
mains {(2¢,y})}5_ . Since domain labels are unknown,
the dataset is D = {(z%,y%)}. We split the model as
three parts: a feature extractor fy : X — Z, a classi-
fier g9 : Z — R and a mutual information estimator
hy « MI = hy(z,y). Algorithm 1 provides a summary
of our method.

Algorithm 1 Maximizing sample-based mutual informa-
tion with the class prior-normalized value

Require:
Require:
Require:

mixture of multiple source domains D.
feature extractor ¢, classifier 6,
embedding network (, MI estimator w.
Require: class prior-normalized value c.
Require: hyperparameter (3, 7.
Randomly split D into disjoint Dy,.,, and D,
for £ = 1 to number of iterations do
Sample mini-batch dy,.,, from Dy,
Ztrn = f¢(dt7n)
Compute mutual information loss:
Larr = o+ by (g (24rn)) // Section 3.4,3.5
Compute cross-entropy loss:
Ltask — E l(CE) (90 (ztrn)a ytrn)

trn

update feature extractor, classifier
(¢7 9) — ((ba 9) - n(v¢,0(Ltask - 6 . LMI))
update embedding network, MI estimator
(p,w) < (p,w) = (Ve wB - —Lnr)

end for

3.4. Maximizing the sample-based mutual informa-
tion

We explicitly maximize the mutual information of the
representation belong to the same category from multiple
source domains, i.e. I(z|y;,z|y = y;). Adding the objec-
tive to the loss function forces the feature extractor to cap-

‘ture the shared and robust label information and reduce the

sensitivity caused by domain difference. We adopt the lower
bound of mutual information in JSD objective because that
objective is insensitive to negative sample strategies [27]:

MI(z,y) > Ep[—sp(hw(2,9))] — Ep,plsp(he (2, )],
&)
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where z is an input sample, ' is an input sampled from
P = P, and sp(z) = log(1 + €7) is the softplus function.

Recent work [15] and our preliminary experiments re-
veal applying regularization onto feature Z may too heavy
for feature extractor. So we apply the mutual information
maximization on the low dimensional embedding e of fea-
ture Z through the embedding network.

Firstly, inputs from a mini-batch d;,.,, was encoded by a
feature extractor fy to feature z¢.,, and further encoded by
the first two layer of classifier gg/ to embedding ey,.,,. Sec-
ondly, we form positive pairs (e;, e;|y; = y;) by indepen-
dently sampling two images belong to the same category
from mini-batch d;,,, and we sample negative instances be-
long to other categories from mini-batch d;.,, to form neg-

ative pairs(e;, €;|y; # ;).
3.5. Class prior-normalized value

In addition to aligning the class conditional distributions
in the embedding space, we further take the marginal la-
bel distribution into consideration. In the domain gener-
alization setting, since the data from the target domain is
unavailable, we cannot estimate the importance weight g—g
between target and source domains for reweighting source
feature distribution [1 1]. However, we can explicitly calcu-
late class prior-normalized value «; and apply to the learn-
ing process. The joint distribution of Pp(fy(z) | V) =
E,[P(fy(x) | Y;)P(Y = j). When P(Y = j)a; = 1,
c is the number of categories, the joint distribution from
multiple source domains are well aligned after we align the
class conditional distributions in the embedding space. That
helps the feature extractor to learn unbiased representation
in a class balanced setting. «;; can be obtained as

1 N
= = 6
L-p(Y =37) ©

c- N j ’
where N denotes the total number of data in D, ¢ denotes
the number of category, and IV; denotes the number of data
of categories j in D.

Qj

3.6. Knowledge distillation

Knowledge distillation [26] is an approach to transfer
knowledge embedded in the teacher model or class relation-
ships between different domains. Recent works [50, 15]
have demonstrated aligning class relations between differ-
ent domains can promote model generalization. However,
when the multiple-source domain data are mixed, we cannot
explicitly transfer the class relationships across domains.
Therefore, we adopt sequential self-distillation proposed
in [22], the knowledge distillation loss is as follows:

Lya = KL(Sek,¢k’89k—l7¢k—l)5 (7
S0k, 01 = softmam(gek (f¢>k (Dtrn))/T)7 (®)

where k is the number we operate self-distillation and sg, ¢,
is the soft label distributions softmax at temperature 7 > 0.
At each step, the new generation 6y, ¢y, is trained to mini-
mize an auxiliary knowledge distillation loss that is the KL
divergence between predictions and soft label predicted by
Or—1, or—1. We analyze the effectiveness of self-distillation
in Section 4.5.

4. Experiments

4.1. Datasets

We evaluate our approach on two datasets for do-
main generalization. PACS [29] includes four domain
data(Photo, Art paintings, Cartoon and Sketches). It in-
cludes 9991 images of size 224 x 224 from 7 categories.

VLCS [48] covers 5 shared object categories from PAS-
CAL VOC 2007 [17], LabelMe [44], Caltech101[19] and
Sun09 [10].

Following the same experimental protocol in [8, 40], we

use three domains as the source domain and the remaining
one as the test domain each time. And in testing, we use
the accuracy of the validation set (10% in the case of PACS,
30% in case of VLCS from source domain) as the model
selection methods.

4.2. Implementation details

We use Alexnet and ResNet-50 pre-trained on ImageNet
by removing the last layer as the feature extractor ¢. As
the embedding network, we adopt two fully connected lay-
ers (1024 — 256), the same architecture as [15]. As the
classifier, we initiate three fully connected layers (1024 —
256 — c), which shares the parameters in the first two lay-
ers with the embedding network since they all encode fea-
ture to low dimensional vector and require similar compu-
tation. For the MI estimator, we initiate two fully connected
layers (512 — 1). We use the same hyper-parameters em-
ployed by [8]. That is, we train the model for 30 epochs
using Stochastic gradient descent (SGD) optimizer with a
momentum = 0.9, a weight decay = 5e-4, and a batch size
= 128; the learning rate is initiated as le-3 and scale it by a
factor of 0.1 after 80% of the training epochs; using random
crop, color jittering, random horizontal flip, and normaliza-
tion as the pre-processing. We further distill our model with
temperature 7 = 4 and coefficient 0.5 to rescale knowledge
distillation loss. We distill the model three times, 10 epochs
each time, and use the accuracy on the validation set for
model selection.

4.3. Baselines

We compare the performance of our method with the fol-
lowing domain generalization methods. TF [29] proposes
a low-rank parameterized neural network. CIDDG [33]
aligns the joint distribution in the representation layer by us-
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ing discriminators for each class and class prior-normalized
value. MLDG [3] adopts an episodic training paradigm
to simulate domain shift. CCSA [41] proposes to address
the semantic distribution alignments for domain adaptation
and generalization. MMD-AAE [32] jointly optimizes a
multi-domain autoencoder, a discriminator, and a classi-
fier with adversarial learning. SLRC [12] uses a struc-
tured lowrank constraint to align domain-specific networks
and the domain-invariant one. D-SAM [13] proposes a
domain-specific aggregation module to merge generic and
specific information in multiple source domains. JiGen [&]
combines the self-supervision task, Jigsaw puzzle, to im-
prove the discriminability of the model and perform well
on domain generalization. MetaReg [4] generates domain-
guided perturbation of input instances. MMLD [40] learns
to generate pseudo domain labels for adversarial training
and achieve better results without using domain labels.
MASEF [15] proposes two regularizations on semantic fea-
ture space. MetaVIB [16] extends Information Bottleneck
to an episodic training paradigm for domain generalization.
Since the experimental protocol used in the reported results
is different, we report Deep All for a fair comparison. Deep
All is the result of training a pre-trained alexnet training by
minimizing the cross-entropy loss of all source domains.

4.4. Results

Table 1 and Table 2 summarize the results on PACS and
VLCS datasets. The results of our methods are average over
three repetitions of each run. For all datasets, our methods
achieve results that surpass all of the existing methods that
do not use domain labels.

In the PACS dataset, our method shows a significant ad-
vantage over Deep All baseline, which proves that maxi-
mizing mutual information of the images from the same
categories among the mixture of multiple source domains
is effective for domain generalization. It is worthwhile to
notice our methods achieve great results when the architec-
ture goes deep.

4.5. Ablation analysis

We conduct an extensive study to investigate two key
points: 1)the contribution of each component to the per-
formance of our method, 2) how the class prior-normalized
value boosts performance of domain generalization under
mismatched label distributions. Firstly, we test all combina-
tions of the key components, including mutual information
maximization module, class prior-normalized value, and se-
quential distillation. It should be noticed that the class prior-
normalized value is a weight to rescale class conditional
alignment, it can only be used together with mutual infor-
mation maximization module. From table 3 and table 4, we
can see the performance gain consistently in all datasets.

Before finding out the benefit brought by class prior-

‘ Art. Cartoon Sketch  Photo ‘ Avg.
Deep All | 63.30 63.13 54.07 877 | 67.05
TF* 62.86 66.97 57.51 89.5 69.21
Deep All | 57.55 67.04 58.52 7798 | 65.27
CIDDG* | 62.70 69.73 64.45  78.65 | 68.88
Deep All | 6491 64.28 53.08 86.67 | 67.24
MLDG* 66.23  66.88 58.96  88.00 | 70.01
Deep All | 64.44 72.07 58.07  87.50 | 70.52
D-SAM* | 63.87 70.70 64.66 8555 | 71.20
Deep All | 66.68 69.41 60.02 8998 | 71.52
JiGen 67.63 71.71 65.18  89.00 | 73.38
Deep Al | 67.21 66.12 55.32  88.47 | 69.28
MetaReg* | 69.82 70.35 59.26  91.07 | 72.66
Deep All | 63.77 66.77 57.27  88.62 | 72.66
FC* 64.89 71.72 61.85 89.94 | 72.1
Deep All | 68.09 70.23 61.80  88.86 | 72.25
MMLD 69.27 72.83 66.44  88.98 | 74.38
Deep All | 67.60 68.87 61.13  89.20 | 71.70
MASF* 70.35 72.46 67.33  90.68 | 75.21
Deep All | 67.66 69.70 63.76  89.88 | 72.75
Ours 71.97 70.09 66.48  90.12 | 74.67
Deep All | 854  77.7 69.5 97.8 82.6
MetaReg* | 87.2  79.2 70.3 97.6 83.6
Deep All | 81.41 78.61 69.69 94.83 | 81.14
MASF* 82.89  80.49 72.29  95.01 | 82.67
Deep All | 85.69 75.00 72.54  97.66 | 82.72
Ours 87.13 7751 76.32  98.46 | 84.86

Table 1. Domain generalization results on PACS. The column title
indicates the name of the domain used as target. The asterisk indi-
cates the method uses domain labels in the training progress, but
Deep ALL, JiGen, MMLD, and our method do not use them. The
last three rows use ResNet-50 as the backbone.

normalized value, we first analyze the mismatch label distri-
butions in the domain generalization setting. It consists two
aspect: 1)the mismatched label distributions between mul-
tiple source domains and unseen domain, 2)the mismatched
label distributions among multiple source domains. We ap-
ply symmetric critic, JS divergence, to measure the two dis-
crepancy, which is demonstrated in Table 5. When apply-
ing class prior-normalized value in PACS, the performance
improves significantly when the unseen domain is Sketch,
which suffers more serious than other unseen domains. We
further demonstrate the confusion matrix in Figure 1. It
can be noticed that class prior-normalized value promote the
performance especially on imbalanced classes, e.g., house,
person, and dog. Similar results is also shown in VLCS,
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‘ Caltech Labelme Pascal Sun ‘ Avg.
Deep All | 85.73 61.28 62.71 5933 | 67.26
CIDDG* | 88.83 63.06 64.38  62.10 | 69.59
Deep All | 86.10 55.60 59.10  54.60 | 63.85
CCSA* 92.30 62.10 67.10 59.10 | 70.15
Deep All | 86.67 58.20 59.10 57.86 | 65.46
SLRC* 92.76 62.34 65.25 63.54 | 70.97
Deep All | 93.40 62.11 68.41 64.16 | 72.02
TF* 93.63 63.49 69.99 61.32 | 72.11
Deep All | 94.95 57.45 66.06 65.87 | 71.08
D-SAM* | 91.75 56.95 58.59 60.84 | 67.03
Deep All | 96.93 59.18 71.96  62.57 | 72.66
JiGEN 96.93 60.90 70.62  64.30 | 73.19
Deep All | 95.89 57.88 72.01 67.76 | 73.39
MMLD 96.66 58.77 71.96  68.13 | 73.88
Deep All | 92.86 63.10 68.67 64.11 | 72.19
MASF* | 94.78 64.90 69.14 67.64 | 74.11
Deep All | 96.07 59.35 68.48 6240 | 71.58
Ours 97.34 62.39 70.58 6532 | 7391

Table 2. Domain generalization results on VLCS. We underline
the result which is higher than all the others despite prodeced by
the Deep All baseline.

| Art. Cartoon  Sketch Photo | Avg.
DeepAll | 67.66 69.70  63.76  89.88 | 72.75
MI | 69.11 69.05 6583  89.04 | 73.26
MI + prior | 71.19 6898  67.78 89.4 | 74.34
MTI + prior + distill | 71.97 7009 6648  90.12 | 74.67

Table 3. Ablation study on PACS.

Caltech Labelme Pascal Sun Avg.
DeepAll 96.07 59.35 68.48 6240 71.58
MI 96.54 59.22 69.10 6271 71.89
MI + prior 95.99 61.23 70.58 6447 73.07
MI + prior + distill  97.34 62.39 70.58 65.32 7391

Table 4. Ablation study on VLCS.

which is shown in Appendix.

4.6. Influence of mutual information ratio 3

Figure 6 and Figure 7 report the influence of mutual in-
formation ratio 3 on the performance of PACS and LVCS.
In both datasets, our method achieves the best performance
when 8 = 0.05.

‘ Art. Cartoon Sketch Photo
D, — D, ‘ 0.020 0.012 0.074 0.031
Among Dy ‘ 0.179 0.187 0.037 0.152

Table 5. Mismatched label distribution in PACS. Each column ti-
tle indicates the name of unseen domain. D, indicates multiple
source domains, while D,, indicates the unseen domain.

(a) Confusion matrices when sketches is used as unseen domain.

Figure 1. Class prior-normalized value especially improve the per-
formance on imbalanced classes.

‘ Art. Cartoon Sketch Photo ‘ Avg.
B=01 |6849 7021 6743 90.32 | 74.11
B=005 | 7119 6898  67.78 894 |74.34
B=001 |67.72 695 66.61  89.46 | 73.32
B =0.005 | 68.85 69.5 6551  89.28 | 73.29
B =0.001 | 6846 6888 6757 89.88 | 73.70

Table 6. Influence of mutual information ratio 8 on PACS. Our
method obtains best performance for § = 0.05. All results in the
table is the average of three runs.

| Caltech Labelme Pascal Sun | Avg.
B=01 |96.7 59.56 70.54  65.05 | 72.96
B=0.05 |9599  61.23 70.58  64.47 | 73.07
B=001 |9646  60.73 69.4  60.81 | 71.85
B=0.005 | 9528  59.23 694 6091 | 7121
B =0.001 | 95.75 58.22 67.82  64.87 | 71.67

Table 7. Influence of mutual information ratio 8 on VLCS.

5. Further study
5.1. Mutual information versus adversarial training

Adversarial training can be viewed as an algorithm that
first optimizes the discriminator to approximate the varia-
tional upper bound of the mutual information between rep-
resentation and domain label MI( fy(x), d), then optimizes
the feature extractor to minimize that upper bound.
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(a) From left to right: the unseen domain is photo, art painting, cartoon, and sketch, respectively.

Figure 2. Comparison with domain adversarial training in PACS.

The adversarial objective function of domain adversarial
training can be generally written as :

mén max By ~plog[D(E(x)))] ©

The domain classifier and the feature extractor can be
modeled as gp(d|z) and pg/(d, z) respectively. We can add
a constant value to the object function, the log of label dis-
tribution ¢(d), and rewrite the minmax game as

mén max Epy(z,a)[log[D(gp(d|z))] —logq(d)]  (10)

This term is a lower bound of an upper bound of the mu-
tual information between representation and domain label
MI(fs(x),d) [46, 20]. However, our method focus on the
mutual information between the images of the same cate-
gory from the mixture of multiple domains. It provides a
fair new direction for domain generalization. In Figure 2,
we also compare our method with the domain adversarial
training method, which achieves the state-of-art on the mix-
ture of multiple source domains.

5.2. Mutual information versus triplet loss

Recent work [49] views mutual information maximiza-
tion from the perspective of metric learning. The lower
bound of mutual information is equivalent to triplets loss
when maximizing Iycg [42] using symmetric separable
critic f(s,y) = ¢(z) "z and share the encoder for differ-
ent view. However, we adopt the JSD objective and use 2
layers fully connected layer as the critic function, which has
the connection with asymmetric variants of multi-class K-
pair loss [53, 54]. Maximizing mutual information has its
benefits since they do not need to carefully choose the neg-
ative samples, while the performance of the latter is highly
related to semi-hard pair mining or the formulation of the
loss function, which inspires some researches in that direc-
tion [51, 52, 57].

Table 8 demonstrates the performance with different
sample strategies. The column of P and N indicate the
positive pairs sample strategy and the negative pairs sam-
ple strategy. Hard means the farthest distance among the
instances from the same category or the closest instances

from other categories. We adopt L2 norm distance as the
distance metric in the embedding space. The results demon-
strate the significant sample insensitive obtained by sample-
based mutual information maximization.

P N | Art. Cartoon Sketch Photo | Avg.
random random | 68.49 70.21 67.43  90.32 | 74.11
random  hard ‘ 70.07 69.45 62.46 90.41 ‘ 73.10
hard random ‘ 70.18 70.85 64.03 89.82 ‘ 73.72

hard hard ‘68.28 69.75 65.52 89.8 ‘73.34

Table 8. Influence of sample strategy on PACS.

6. Conclusion

In this paper, we proposed a mutual information maxi-
mization module to take the place of adversarial training in
the domain generalization setting. We circumvent the min-
max game and the tradeoff between distribution alignment
and target error minimization by incorporate class prior-
normalized value into the class conditional mutual informa-
tion estimation. Our methods achieve compatible perfor-
mance without using domain labels.
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7. Appendix

7.1. Evaluation of class prior-normalized value on
VLCS

We provide here some further analysis on the effective-
ness of class prior-normalized value on VLCS. Table 9
shows the discrepancy between two kinds of marginal la-
bel distribution. Applying class prior-normalized value in
VLCS improves the performance significantly when the un-
seen domain is Sun, which suffers the most serious general-
ization discrepancy than other unseen domains. We further
demonstrate the confusion metrics in Figure 3. Class prior-
normalized value promotes the performance especially on
imbalanced classes, e.g., bird, dog, and car.

‘ Caltech Labelme Pascal Sun
D, — D, ‘ 0.0028  0.0052 0.0078  0.0124
Among D ‘ 0.0438 0.0370 0.032 0.0219

Table 9. Mismatched label distribution in VLCS. Each column ti-
tle indicates the name of unseen domain. D, indicates multiple
source domains, while D,, indicates the unseen domain.

(a) Confusion matrices when Pascal is used as unseen domain. Left: apply-
ing mutual information without class prior-normalized value. Right: applying

mutual information with class prior-normalized value.

Figure 3. Class prior-normalized value especially improve the per-
formance on imbalanced classes.

7.2. Influence of the number of negative pairs

We compare the influence of the number of negative
samples when calculating the mutual information between
images of the same category from the mixture of multiple
domains. Table 10 and Table 11 demonstrate our method is
very insensitive to the number of negative samples.

Num | Art.  Cartoon Sketch Photo | Avg.
1 ‘ 68.49 70.21 6743  90.32 ‘ 74.34
2 | 6858 6941 6696 9004 | 73.75
5 | 6853 7016 6691 8974 | 73.84

Table 10. Influence of the number of negative samples on PACS
(accuracy, %).

10

Num ‘ Art. Cartoon Sketch Photo ‘ Avg.
1 ‘ 95.99 61.23 70.58  64.47 ‘ 73.07
2 ‘ 95.28 59.68 67.62  65.46 ‘ 72.01
5 |9615 60.14  66.66 66.23 | 72.29

Table 11. Influence of the number of negative samples on VLCS
(accuracy, %).

7.3. Influence of the number of pairs in a mini-batch

Here we analyze the influence of the number of pairs we
sampled from one mini-batch to compute pair-wise mutual
information. Even in an extremely small number of sample
pairs in one mini-batch, our method can still promote the
performance against the Deep All baseline. The result is
shown in Table 12 and Table 13.

Num | Art.  Cartoon Sketch Photo | Avg.
I | 6945 6974  67.09 90.14 | 74.10
5 ‘ 67.48 69.28 66.28 89.52 ‘ 72.89
10 | 6899 7189 6462 9048 | 74.00
50 | 7119 6898 6778 894 | 74.34

Table 12. Influence of the number of pairs in a mini-batch on PACS
(accuracy, %).

Num ‘ Caltech Labelme Pascal Sun ‘ Avg.
1 |96.15  59.09 64.97  69.07 | 72.32
5 ‘ 95.84 68.76 66.8 63.15 ‘ 71.14
10 ‘ 93.63 61.98 64.17 64.97 ‘ 71.27
50 ‘ 95.99 61.23 70.58 64.47 ‘ 73.07

Table 13. Influence of the number of pairs in a mini-batch on
VLCS (accuracy, %).
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